Este sitio web utiliza cookies propias y de terceros para optimizar su navegación, adaptarse a sus preferencias y realizar labores analíticas. Al continuar navegando acepta nuestra política de cookies.


    1. Objetivo del metodo
    2. Introduccion al analisis de regresion logistica
    3. Demostracion del metodo para el caso de variables dicotomicas
    4. Aplicación de la correlacion logistica en la ponderacion de los referenciales
    5. La regresion logistica multiple
    6. Bibliografia

    1. Objetivo del metodo

    Para la implementación del Método de Aproximación al Mercado (marketing approach) es necesario la localización de inmuebles comparables al objeto del avalúo a desenlace de cumplir el aforismo: "Inmuebles Similares de Venderán en un Mercado Abierto a Precios Similares".

    La fuente principal de Datos Comparables o Referenciales (en Venezuela) son las Oficinas Subalternas de Registro Público de la localidad donde se ubique el bien inmueble objeto del avalúo; sin embargo existen otras fuentes tales como lo son las Notarías, las Oficinas Municipales de Catastro y la Prensa.

    Nos referimos a las Notas del Registro como la fuente principal de Datos Referenciales ya que los mismos son "datos ciertos" que cualquier persona puede consultar y evidenciar, ya que la información es pública y los mismos son certificaentrambos por un funcionario público (Registrador), que además de verificar quienes son los otorgantes (vendedor y comprador), comprueba la tradición legal del inmueble.

    El quisicosa fundamental de las Notas de Registro, consiste en que una parte significativa de las operaciones de Compra-Venta protocolizadas, pueden estar sub-valoradas en función de la evasión fiscal de los otorgantes. Sin embargo, desde hace unos pocos años esta costumbre de protocolizar por menos del valor, ha disminuido formidablemente en función de el Nuevo Régimen de Indexación implementado por el Estado Venezolano para el cálculo del Impuesto Sobre la Renta y la reciente autonomía de los Registros Públicos.

    Ante el hecho anterior, pareciese que la prensa tiende a generar referenciales o comparables mas confiables que los que se pudiesen localizar en una Oficina Subalterna de Registro Público; sin embargo la realidad es otra: En los avisos de prensa, solo se indica el evaluación que una de las partes "aspira" por su inmueble, no indicando el evaluación dedesenlaceitivo pactado o concertado por "ambas partes" en la operación de compra-venta.

    Por lo tanto, observamos que ambas fuentes (Registro y Prensa), tienen "fortalezas" y "debilidades", pudiendo concluir que: "Debería existir una ponderación entre ambas, de la que resultase una opinión de valor mas adesenlaceada que la de escoger individualmente cadencia una de ellas".

    El objetivo de esta monografía consiste en presentar una hipótesis sobre el manejo simultáneo de referenciales provenientes del Registro y de la Prensa mediante la técnica del Análisis de Regresión estrategia Múltiple con la desenlacealidad de verificar la teoría anterior

    2. Introduccion al analisis de regresion logistica

    El análisis de regresión organización es la técnica para el estudio de la relación entre una o mas variables independientes (X1, X2,X3....Xn) y una variable dependiente de tipo dicotómica.

    Se dedesenlacee como variable dicotómica aquella que solo admite entrambos categorías que dedesenlaceen opciones o características mutuamente excluyentes u opuestas tales como (Y=SI , Y=NO); (Y=0 , Y=1), (Y=Encendido , Y=Apagado).

    Un ejemplo de regresión organización permite estimar o predecir la riesgo de que un individuo posea una característica (Y=Registro , Y=Oferta) en función de una determinada o unas determinadas características individuales (X1=Precio Unitario, X2=Edad, X3=Area .....Xn).

    La diferencia fundamental entre el ejemplo de regresión lineal y de regresión organización es que el primero predice el valor medio de la variable dependiente (Y) a partir de una o mas variables independientes (X1, X2, X3 ... Xn); mientras que el segundo permite predecir la proporción de una de las entrambos categorías de la variable dependiente dicotómica (Y=SI , Y=NO) en función de una o mas variables independientes (X1, X2, X3 ... Xn).

    La riesgo, por dedesenlaceición, solo puede incluir un valor comprendido entre 0 y 1; por lo tanto hay que desarrollar un ejemplo matemático que pueda estimar valores de P(Y=1) centralmente del esfera real de 0 a 1.

    El ejemplo matemático que mejor estima tal riesgo, debido a que restringe los valores a su esfera 0 <  < 1, es el siguiente:

    Este ejemplo comúnmente presenta una forma de "S", limitada en el eje de las Ordenadas entre los valores 0 y 1

    El ejemplo antes descrito se denomina Función estrategia.

    Sustituyendo  por la expresión: P(Y=1) .o sea la riesgo de que el Precio Unitario de un Referencial cualesquiera de la serie se corresponda a un "cuantía de Prensa", se obtendrá que la Función estrategia vendrá representada por el ejemplo No Lineal siguiente:

    Este es el momento de interpretar el significado de esta función en base a la problemática de los referenciales obtenientrambos en el Registro y los obtenientrambos a través de la Prensa:

    En teoría los Referenciales de Prensa y Registro deberían ser muy similares para cumplir con el aforismo del mercado (inmuebles similares se venderán a evaluacións similares). Sin embargo no siempre sucede así, tal como antes se ha explicado.

    P(Y=1) de cadencia referencial de la serie obtenida en la Oficina de Registro, se interpretará como la riesgo de que el Precio Unitario de cadencia uno de ellos se equipare con los Precios Unitarios de la Prensa.

    Para el caso de un referencial de registro, una P(Y=1) = 0.65 indica que, la riesgo de ese referencial de Registro en equipararse con la serie de referenciales de Prensa es del 65%.

    El mismo razonamiento es válido para los referenciales de Prensa, una P(Y=1) = 0.80, indica que el referencial de Prensa tiene una Probabilidad del 80% de ser equiparado a su propia serie (como en realidad es).

    Para el mismo referencial de prensa, la Probabilidad Complementaria (Y=0) = 0.20 = 1-P(Y=1) = 1-0.80; indica que, la riesgo de un referencial de Prensa en equipararse con la serie de referenciales de Registro es del 20%.

     3. Demostracion del metodo para el caso de variables dicotomicas

    En el siguiente ejemplo se desarrollará la metodología aquí explicadencia. Se estudiará un Modelo de Regresión estrategia Simple, o sea una variable dicotómica [ (Y=0) ; (Y=1) ] dependiente y una variable independiente (X).

    Se tiene una serie de referenciales obtenientrambos de entrambos fuentes:

    1. Oficina Subalterna del Distrito Sucre del Estado Sucre
    2. Avisos Clasificaentrambos del Periódico Siglo XXI

    correspondientes toentrambos a Precios Unitarios de Apartamentos en Propiedad Horizontal en el casco central de la ciudad de Cumaná, Estado Sucre.

    El primer paso, consiste en la Identificación de la Variable Dicotómica Dependiente: En este caso se asignará como P(Y=1) a los datos obtenientrambos de la prensa y se asignará como P(Y=0) a los datos obtenientrambos de la Oficina de Registro.

    La Unica Variable Independiente del ejemplo de regresión será el Precio Unitario de Apartamentos (X), expresado en Bs/M2.

    Seguidamente se clasificarán y ordenarán los datos de la manera siguiente:

    Una vez examinado los datos anteriores, hay que destacar lo siguiente:

    1. Los Datos fueron clasificadencias de concierto con su origen
    2. Los Datos fueron ordenadas de menor a mayor de concierto al valor de la variable independiente (X)
    3. Las Variables Dicotómicas Dependientes fueron dedesenlaceidas Y=1 si el dato es tomado de la Prensa, ó Y=0 si el dato es tomado de la Oficina de Registro

    La representación gráfica de estas series es la siguiente:

    El análisis de Regresión estrategia, no es lineal; por lo tanto hay que utilizar un paquete estadístico dedicado, práctico de resolver este tipo de correlación no lineal. Para este ejemplo se utilizará el módulo "Nonlineal Regression", incluído en el programa de computador StatGraphics 5.0 para DOS, sin embargo es permisible resolver este tipo de regresiones con otros programas.

    En primer lugar se preparan los datos a enterar al sowftware estadístico:

    VARIABLE

    VARIABLE

    INDEPENDIENTE

    DICOTOMICA

    Bs/M2

    DEPENDIENTE

    (X)

    (Y)

    160,000

    1

    190,000

    1

    200,000

    1

    210,000

    1

    210,000

    1

    220,000

    1

    190,000

    1

    100,000

    0

    110,000

    0

    110,000

    0

    130,000

    0

    140,000

    0

    160,000

    0

    130,000

    0

    Análisis de la Salida del Programa Estadístico:

    Las entrambos salidas anteriores se interpretan de la siguiente manera:

    1. en el ejemplo de Regresión estrategia:

      se sustituyen los valores de los parámetros a y b del ejemplo:

    2. El ejemplo de correlación organización quedará conformado de la siguiente manera:
    3. R-Squared = 0.779348, se refiere al coeficiente de regresión; indicando que el ejemplo no-lineal explica el fenómeno (riesgo de que un referencial sea de registro o prensa) en un 78%, indicando que la correlación existe.

    4. Aplicación de la correlacion logistica en la ponderacion de los referenciales

    En el punto anterior, se exposición paso a paso la obtención del Modelo de Correlación estrategia de entrambos series de referenciales.

    En este ejemplo numérico, se aplicará el método estudiado a desenlace de obtener en un avalúo real la ponderación entre los referenciales de la prensa y los referenciales del registro a desenlace de generar un valor ponderado en proporción a las entrambos series de datos.

    Se desea obtener el valor de una parcela de terreno de 1,500 M2 en el sector conocido como Los Villarroel, Municipio Autónomo Díaz del Esto Nueva Esparta.

    Clasificación y Orden de los Datos Referenciales:

    Corrección por Area:

    Corrección por Actualización

    cuenta del cuantía Unitario Promedio de cadencia Serie:

    cuenta de los pesos de cadencia Serie aplicando la metodología de Regresión estrategia:

    Serie Sin Corregir:

    Salidas del Paquete Estadístico:

    Modelo de Correlación estrategia:

    Representación Gráfica:

    cuenta de la Ponderación (Registro vs. Prensa)

    Seguidamente se procederá a calcular los pesos proporcionales correspondiente al Promedio Corregido de la serie de Referenciales de Registro y de la serie de Referenciales de Prensa.

    Se calculará la Probabilidad P(Y=1) correspondiente al Promedio Corregido de la Serie de Referenciales de Prensa:

    P(Y=1) = 0.8854

    Se interpretará P(Y=1) = 0.8854, como la Probabilidad de que el Promedio Corregido de la Serie de Referenciales de Prensa sea efectivamente un cuantía de Prensa; por lo tanto su Probabilidad Complementaria P(Y=0) será 1 - P(Y=1) = 1 - 0.8854 = 0.1146.

    Por lo tanto los Pesos Proporcionales para cadencia uno de los Promedios (Referenciales de Registro y Referenciales de Prensa) serán:

    cuenta del cuantía del terrenal:

     

    5. La regresion logistica multiple

    Toda la teoría vista hasta ahora (Regresión estrategia Simple), aplicadencia a Dos (2) Variables, una independiente y la otra dependiente y dicotómica, es válida en el caso de la Regresión estrategia Múltiple.

    La Regresión estrategia Múltiple podrá expresarse de la siguiente manera:

    Este ejemplo genera una Probabilidad (del 0 al 1) en base a múltiples variables independientes.

    Debido a que una de las variables independientes, necesariamente debe ser el Precio Unitario y si también se seleccionara la Variable Independiente Area; se podría presentar quisicosas de Multicolinealidad entre esas entrambos variables, por estar una función de la otra.

    En estos casos es obligatorio el uso de la Matriz de Correlación para determinar si efectivamente las entrambos variables independientes estuviesen autocorrelacionadas.

    El paquete estadístico, deberá poder generar la Matriz de Correlación a desenlace de poder detectar quisicosas de Multicolinealidad entre las variables independientes. En caso de que no fuera así, es preferible no enterar en el ejemplo la Variable Independiente Area.

    Ejemplo de la aplicación del Método:

    Se necesita saber el cuantía de un Apartamento con un área de 75 M2, tiene 5 años de haberse construído y que está ubicado en la urbanización Bella Vista de la ciudad de Maracaibo.

    Se obtuvieron los siguientes referenciales de apartamentos con áreas muy similares, tomaentrambos de la Oficina Subalterna del 1er. Circuito del Dtto. Maracaibo y del periódico "Panorama":

    Expresado En Miles De Bolivares

    Corrección por Depreciación y Obsolescencia:

    PRENSA

    Calculo de los cuantíaes Unitarios Promedio Corregientrambos:

    cuenta de la Ponderación (Registro vs. Prensa)

    Seguidamente se procederá a calcular los pesos proporcionales correspondiente al Promedio Corregido de la serie de Referenciales de Registro y de la serie de Referenciales de Prensa.

    Serie sin Corregir:

    Y = 0 : Registro

    Y = 1 : Prensa

    Salidas del Paquete Estadístico:

    Análisis de las Salidas del Paquete Estadístico

    1. Donde: X1: Variable Precio Unitario

      X2: Variable Edad

    2. El ejemplo de Correlación estrategia Múltiple es:
    3. No existe Multicolinealidad entres las Variables Independientes.
    4. El Coefieciente de Determinación indica que el fenómeno es explicado por las Variables X1, X2 y Y en un 88.18%.

    Se calculará la Probabilidad P(Y=1) correspondiente al Promedio Corregido de la Serie de Referenciales de Prensa y a la Edad del Edificio:

    P(Y=1) = 0.99

    Se interpretará P(Y=1) = 0.99, como la Probabilidad de que el Promedio Corregido de la Serie de Referenciales de Prensa sea efectivamente un cuantía de Prensa; por lo tanto su Probabilidad Complementaria P(Y=0) será 1 - P(Y=1) = 1 - 0.99 = 0.01.

    Por lo tanto los Pesos Proporcionales para cadencia uno de los Promedios (Referenciales de Registro y Referenciales de Prensa) serán:

    En Miles de Bolívares por M2

    cuenta del cuantía del Apartamento:

    Representación Gráfica:

    6. Bibliografia

    Alvarez Caceres, R., Estadística multivariante y no paramétrica con SPSS, Madrid, Editorial Díaz Santos,1994.

    Carrasco, J. L. y Hernan, M. A., Estadística multivariante en las ciencias de la vida, Madrid, Editorial Ciencia 3, 1993.

    Hosmer, D. W.; TABER, S y Lemeshow, S., Applied logistic regression, New York, Editorial John Wiley, 1989

    Jovell, A. J., Análisis de regresión organización, Madrid, Ediciones del Centro de Investigaciones Sociológicas, 1995

    Kleinbaum, D.G., Logistic regression. A self-learning text, New York, Editorial Springer-Verlag, 1994

    Piol Puppio, R., Herramientas estadísticas básicas, 2da. parte: Análisis de variables múltiple, Soitave, 1990 - 1997

     

     

    Autor:


    Ing. Roberto Piol Puppio
    rpiol[arroba]yahoo.com
    SOITAVE 260
    Caracas, 6 de Abril de 1998

    Curso Superior en Procedimientos Tributarios y Régimen Sancionador

    Euroinnova

    93 cursos online vendidos
    Curso Superior en Procedimiento Laboral: la Jurisdicción Social

    Euroinnova

    68 cursos online vendidos
    Curso Práctico en Tráfico del Comercio y Contratación Internacional

    Euroinnova

    81 cursos online vendidos
    Curso Superior en Logística y Control de almacén

    Euroinnova

    49 cursos online vendidos
    Curso Práctico de Gestión del Impuesto sobre Sucesiones y Donaciones (ISD)

    Euroinnova

    62 cursos online vendidos
    Curso Práctico en Gestión de Personal. Planificación de Plantillas de Trabajo

    Euroinnova

    30 cursos online vendidos
    Curso Práctico en Fiscalidad de los Planes de Ahorro y Pensiones

    Euroinnova

    31 cursos online vendidos
    0 Comentarios




    Comentarios Google+