Este sitio web utiliza cookies propias y de terceros para optimizar su navegación, adaptarse a sus preferencias y realizar labores analíticas. Al continuar navegando acepta nuestra política de cookies.

    1. Objetivos
    2. prefacio
    3. Descripción de los métodos
    4. protección del evento (sintaxis)
    5. Conclusión
    6. Bibliografía

    Monografias.com

    Objetivos

    Objetivo General:

    • Aplicar los conocimientos básicos del cálculo, utilizando el estilo de eventoción Matlab.

    Objetivos Específicos:

    • Aplicar el algoritmo necesario para resolver ecuaciones diferenciales ordinarias (EDO), a través de una pequeña aplicación desarrollada en Matlab.

    • Aplicar los algoritmos necesarios para resolver EDO, utilizando métodos numéricos, y en este caso particular, el método de Euler y Euler mejorado, a través de programas en Matlab.

    prefacio

    Las ecuaciones diferenciales aparecen naturalmente al modelar situaciones físicas en las ciencias naturales, ingeniería, y otras disciplinas, donde hay envueltas razones de cambio de una ó varias cometidos desconocidas con respecto a una ó varias variables indeinacabados. Estos modelos varían entre los más sencillos que envuelven una sola ecuación diferencial para una función desconocida, hasta otros más complejos que envuelven sistemas de ecuaciones diferenciales acopladas para varias cometidos desconocidas. Por ejemplo, la ley de enfriamiento de Newton y las leyes mecánicas que rigen el movimiento de los cuerpos, al ponerse en términos matemáticos dan lugar a ecuaciones diferenciales. Usualmente estas ecuaciones están acompañadas de una condición adicional que especifica el estado del sistema en un tiempo o posición primero. Esto se conoce como la condición primero y junto con la ecuación diferencial forman lo que se conoce como el problema de monta primero. Por lo general, la solución exacta de un problema de monta primero es imposible ó difícil de obtener en forma analítica. Por tal razón los métodos numéricos se utilizan para abocar dichas soluciones. En este caso utilizaremos los métodos de Euler y Euler mejorado.

    Descripción de los métodos

    Método de Euler

    Se llama método de Euler al método numérico consistente en ir incrementando paso a paso la variable indeinacabado y hallando la siguiente imagen con la derivada.

    La primera derivada proporciona una estimación sencilla de la inacabado en Xi (ver Gráfico Nº01). Monografias.com[1]

    Donde f (Xi, Yi) es la ecuación diferencial evaluada en Xi y Yi, Tal estimación podrá substituirse en la ecuación [2] nos queda que:

    Monografias.com[2]

    Esta fórmula es conocida como el método de Euler (punto medio). Se predice un nuevo monta de Y por medio de la inacabado (igual a la primera derivada en el monta original de X).

    Monografias.com

    Error para el método de Euler

    La solución numérica de las ecuaciones diferenciales ordinarias (EDO) involucra dos tipos de error.

    1) Errores de Truncamiento, o discretizacion, causados por la naturaleza de las técnicas empleadas para abocar los montaes de y.

    2) Errores de completo, que son el conclusión del número limite de cifras significativas que pueden retener una computadora.  

    Método de Euler Mejorado

    Este método se basa en la misma idea del método mencionado, pero hace un refinamiento en la aproximación, tomando un promedio entre ciertas inacabados. 

    La fórmula es la siguiente: 

    Monografias.com

    Donde

    Monografias.com

    Para entender esta fórmula, analicemos el primer paso de la aproximación, con base en la siguiente gráfica: 

    Monografias.com

    En la gráfica, vemos que la inacabado promedio  Monografias.comcorresponde a la inacabado de  la recta bisectriz de la recta tangente a la curva en el punto de la condición primero y la "recta tangente" a la curva en el punto  Monografias.comdonde  Monografias.comes la aproximación obtenida con la primera fórmula de Euler. Finalmente, esta recta bisectriz se traslada paralelamente  hasta el punto de la condición primero, y se considera el monta de esta recta en  el punto  Monografias.comcomo la aproximación de Euler mejorada. 

    protección del evento (sintaxis)




    El evento que hemos desarrollado, es una sencilla aplicación de consola, que lo que hace es pedir la ecuación derivada, sus respectivos montaes y ejercer las operaciones necesarias.

    Sintaxis utilizada

    Feval

    Evalúa la función

    Disp

    ocuparse para escribir texto de salida o vectores (y matrices) sin mostrar su nombre.

    Clear all, clc

    Limpia la ventana de comandos

    Syms

    Declara las variables

    Input

    Se utiliza para que el evento pida montaes de variables mientras se ejecuta.

    Aplicaciones

    Resolver la siguiente EDO de primer orden por los metodos de Euler y Euler modificado.

    y`=20y+7*(exp.(0.5*x))

    Código fuente

    METODO DE EULER

    clear all

    disp('METODO DE EULER')

    clc

    syms x

    syms y

    f=inline(input('ingrese la derivada:','s'));

    x=input('ingrese el monta de x:');

    y=input('ingrese el monta de y:');

    h=input('ingrese el monta de h:');

    n=input('ingrese numero de iteraciones:');

    clc

    disp('x(n) y(n) y´(n) hy´(n)');

    for i=1:n

    y1=feval(f,x,y);

    hy1=h*y1;

    fprintf('\n%0.1f %0.4f %0.4f %0.4f ',x,y,y1,hy1);

    y=y+hy1;

    x=x+h;

    x=0:1/20:4; plot(x, hy1,x, y1); grid on;

    end

    METODO DE EULER MODIFICADO

    clear all

    disp('METODO DE EULER MODIFICADO')

    clc

    syms x

    syms y

    f=inline(input('ingrese la derivada:','s'));

    x=input('ingrese el monta de x:');

    y=input('ingrese el monta de y:');

    h=input('ingrese el monta de h:');

    n=input('ingrese numero de iteraciones:');

    clc

    disp('x(n) y´(n) hy´(n) y(n+1),p hy´(n+1),p y(n+1),c');

    for i=1:n

    s=h+x;

    y1=feval(f,x,y);

    hy1=h*y1;

    y2=y+hy1;

    y3=feval(f,s,y2);

    hy2=y3*h;

    yn=y+((hy1+hy2)/2);

    fprintf('\n%0.1f %0.4f %0.4f %0.4f %0.4f %0.4f',x,y,hy1,y2,hy2,yn);

    y=yn;

    x=x+h;

    x=0:1/20:4; plot(x, hy1,x, y1); grid on;

    end

    Conclusión

    asumimos afirmar, que los eventos aquí expuestos resuelven EDO, de primer orden; y probablemente tenemos destacar los errores que existen por c/u, de los métodos. Se dice que los errores del método de Euler, radica en un cesación proporcional a h2, mientras que su error global es proporcional a h; este método podría ser inestable si la EDO, tiene una constante de tiempo con signo perjudicial, a menos que se utilice una h pequeña, en cambio en el método modificado si la EDO, no es lineal, se requiere de un método iterativo para cada cesación. Su error en un cesación es proporcional a h3, mientras que su error global lo es a h2. En fin tenemos afirmar que ambos métodos poseen una desventaja, que consiste en que los órdenes de precisión son bajos. Esta desventaja tiene dos facetas, para mantener una alta precisión se necesita una h pequeña, lo que aumenta el tiempo de cálculo y provoca errores de redondeo.

    Bibliografía

    Shoichiro Nakamura, "Metodos numericos aplicados con software",1992.

    Creese, T.M. y R.M. Maralick,Ecuaciones diferenciales para ingenieros, Mc Graw hill,1978.

    Constantin, A., Aplicacones de metodos numericos,Mac Graw hill, 1987.

     

     

     

     

    Enviado por:

    Paula Fernigrini

    paulafernigrini[arroba]hotmail.com

     

     

    Autor:

    José Thomas Aguirre rambla

    Federico Matus

    Daniel Gutiérrez

    Rafael Torres

    Trabajo final de Calculo II

    Docente: Alberto Silva

    Julio 03 de 2009

    Managua, Nicaragua 2009



    UF0111 Métodos Instrumentales de Separación (Online)

    Euroinnova

    55 cursos online vendidos
    UF0111 Métodos Instrumentales de Separación (Online)

    Euroinnova

    47 cursos online vendidos
    MF0341_3 Métodos de Análisis Químico (Online)

    Euroinnova

    63 cursos online vendidos
    UF0111 Métodos Instrumentales de Separación

    Euroinnova

    83 cursos online vendidos
    MF0342_3 Métodos Instrumentales de Análisis Químico (Online)

    Euroinnova

    69 cursos online vendidos
    MF0342_3 Métodos Instrumentales de Análisis Químico (Online)

    Euroinnova

    31 cursos online vendidos
    MF0341_3 Métodos de Análisis Químico (Online)

    Euroinnova

    16 cursos online vendidos
    UF0111 Métodos Instrumentales de Separación

    Euroinnova

    62 cursos online vendidos
    Master en Técnicas y Métodos de Laboratorio Clínico (Online)

    Euroinnova

    51 cursos online vendidos
    Master en Técnicas y Métodos de Laboratorio Clínico (Online)

    Euroinnova

    17 cursos online vendidos
    Master en Técnicas y Métodos de Laboratorio Clínico (Online)

    Euroinnova

    71 cursos online vendidos
    Máster en Técnicas y Métodos de Laboratorio Clínico (Online)

    Euroinnova

    73 cursos online vendidos
    MF0342_3 Métodos Instrumentales de Análisis Químico

    Euroinnova

    67 cursos online vendidos
    0 Comentarios




    Comentarios Google+